能源供應鏈的穩定性、安全性要求更高。保障能源安全是能源行業(yè)的第一責任和使命,進(jìn)入新時(shí)代,能源發(fā)展納入生態(tài)文明建設總體布局,在經(jīng)濟社會(huì )發(fā)展中的基礎地位、保障作用、關(guān)聯(lián)強度日益突出,降能耗、保增長(cháng)是一個(gè)對立統一的時(shí)代命題,確保能源高質(zhì)量供給始終是我們必須堅守的底線(xiàn)。
2021年,我國以5.2%的能源消費總量增速支撐了8.1%的GDP增速。我國是發(fā)展中國家,工業(yè)化、城鎮化還在深入推進(jìn),能源需求會(huì )不可避免繼續增長(cháng),同時(shí),包括能源在內的經(jīng)濟社會(huì )全面綠色轉型的速度、力度還在逐漸加大。當前國際能源供應鏈動(dòng)蕩加劇,我國作為能源消費大國,保障能源供應的穩定安全成為至關(guān)重要的優(yōu)先事項,統籌安全和發(fā)展的重要性、緊迫性從未有過(guò)的。從一定意義上說(shuō),我國經(jīng)濟社會(huì )的綠色轉型與發(fā)展趕超壓縮在同一個(gè)時(shí)空,新時(shí)代的能源供應就必須是一個(gè)變“能源不可能三角"為“能源可能三角"的過(guò)程。
能源領(lǐng)域“雙碳"工作任務(wù)重、壓力大。建設全國統一的能源市場(chǎng),必須結合實(shí)現碳達峰碳中和目標任務(wù),有序推進(jìn)。“十四五"時(shí)期,是我國碳達峰、碳中和工作的攻堅期。根據國際能源署(IEA)的統計數據,2020年全球碳排放主要來(lái)自能源發(fā)電與供熱、交通運輸、制造業(yè)與建筑業(yè)三個(gè)領(lǐng)域,分別占比43%、26%、17%,能源領(lǐng)域是推進(jìn)“雙碳"工作的主戰場(chǎng),攸關(guān)全國“雙碳"工作全局。
第1章 裝置特點(diǎn)與參數(SHHZFA-V變頻互感器測試儀測試迅速準確)
是在傳統基于調壓器、升壓器、升流器的互感器伏安特性變比極性綜合測試儀基礎上,廣泛聽(tīng)取用戶(hù)意見(jiàn)、經(jīng)過(guò)大量的市場(chǎng)調研、深入進(jìn)行理論研究之后研發(fā)的新一代革新型CT、PT測試儀器。裝置采用高性能DSP和FPGA、*的制造工藝,保證了產(chǎn)品性能穩定可靠、功能完備、自動(dòng)化程度高、測試效率高、在國內處于水平,是電力行業(yè)用于互感器的專(zhuān)業(yè)測試儀器。
1.1 主要技術(shù)特點(diǎn)
功能全面,既滿(mǎn)足各類(lèi)CT(如:保護類(lèi)、計量類(lèi)、TP類(lèi))的勵磁特性(即伏安特性)、變比、極性、二次繞組電阻、二次負荷、比差以及角差等測試要求,又可用于各類(lèi)PT電磁單元的勵磁特性、變比、極性、二次繞組電阻、比差等測試。
現場(chǎng)檢定電流互感器無(wú)需標準電流互感器、升流器、負載箱、調壓控制箱以及大電流導線(xiàn),使用極為簡(jiǎn)單的測試接線(xiàn)和操作實(shí)現電流互感器的檢定,的降低了工作強度和提高了工作效率,方便現場(chǎng)開(kāi)展互感器現場(chǎng)檢定工作。
可測量變比差與角差,比差大允許誤差±0.05%,角差大允許誤差±2min,能夠進(jìn)行0.2S級電流互感器的測量,變比測量范圍為1~40000。
基于*的變頻法測試CT/PT伏安特性曲線(xiàn)和10%誤差曲線(xiàn),輸出大僅180V的交流電壓和12Arms(36A峰值)的交流電流,卻能應對拐點(diǎn)高達60KV的CT測試。
自動(dòng)給出拐點(diǎn)電壓/電流、10%(5%)誤差曲線(xiàn)、準確限值系數(ALF)、儀表保安系數(FS)、二次時(shí)間常數(Ts)、剩磁系數(Kr)、飽和及不飽和電感等CT、PT參數。
測試滿(mǎn)足GB1208(IEC60044-1)、GB16847(IEC60044-6) 、GB1207等各類(lèi)互感器標準,并依照互感器類(lèi)型和級別自動(dòng)選擇何種標準進(jìn)行測試。
測試簡(jiǎn)單方便,一鍵完成CT直阻、勵磁、變比和極性測試,而且除了負荷測試外,CT其他各項測試都是采用同一種接線(xiàn)方式。
全中文動(dòng)態(tài)圖形界面,無(wú)需參考說(shuō)明書(shū)即可完成接線(xiàn)、設置參數:動(dòng)態(tài)顯示參數設置,根據當前所選的試驗項目自動(dòng)顯示其相關(guān)參數;動(dòng)態(tài)顯示幫助接線(xiàn)圖,根據當前所選試驗項目,顯示對應的接線(xiàn)圖。
5.7寸圖形透反式LCD,陽(yáng)光下清晰可視。
采用旋轉光電鼠標操作,操作簡(jiǎn)單,快捷方便,極易掌握。
面板自帶打印機,可自動(dòng)打印生成的試驗報告。
測試結果可用U盤(pán)導出,程序可用U盤(pán)升級,方便快捷。
裝置可存儲1000組測試數據,掉電不丟失。
配有后臺分析軟件,方便測試報告的保存、轉換、分析,可以用于試驗數據的對比、判斷與評估。
易于攜帶,裝置重量<9Kg。
1.2 裝置面板說(shuō)明(SHHZFA-V變頻互感器測試儀測試迅速準確)
裝置面板結構如右圖接線(xiàn)端子從左向右:
·紅黑S1、S2端子:試驗電源輸出
·紅黑S1、S2端子:輸出電壓回測
·紅黑P1、P2端子:感應電壓測量端子
·液晶顯示屏:中文顯示界面
·微型打印機:打印測試數據、曲線(xiàn)
·旋轉鼠標:輸入數值和操作命令
1.3 主要技術(shù)參數(SHHZFA-V變頻互感器測試儀測試迅速準確)
SHHZFA-V | ||
測試用途 | CT, PT | |
輸出 | 0~180Vrms,12Arms,36A(峰值) | |
電壓測量精度 | ±0.1% | |
CT變比 測量 | 范圍 | 1~40000 |
精度 | ±0.05% | |
PT變比 測量 | 范圍 | 1~40000 |
精度 | ±0.05% | |
相位測量 | 精度 | ±2min |
分辨率 | 0.5min | |
二次繞組電阻測量 | 范圍 | 0~300Ω |
精度 | 0.2%±2mΩ | |
交流負載測量 | 范圍 | 0~1000VA |
精度 | 0.2%±0.02VA | |
輸入電源電壓 | AC220V±10%,50Hz | |
工作環(huán)境 | 溫度:-10οC~50οC, 濕度:≤90% | |
尺寸、重量 | 尺寸365 mm×290 mm×153mm 重量<10kg |
第2章(SHHZFA-V變頻互感器測試儀測試迅速準確)
用戶(hù)接口和操作方法
2.1 電流互感器試驗
在參數界面,用 旋轉鼠標切換光標到類(lèi)型欄,選擇互感器類(lèi)型為CT。
2.1.1 試驗接線(xiàn)
試驗接線(xiàn)步驟如下:
一步:根據表2.1描述的CT試驗項目說(shuō)明,依照圖2.1或圖2.2進(jìn)行接線(xiàn)(對于各種結構的CT,可參考附錄D描述的實(shí)際接線(xiàn)方式)。
表2.1 CT試驗項目說(shuō)明
電阻 | 勵磁 | 變比 | 負荷 | 說(shuō)明 | 接線(xiàn)圖 |
√ | 測量CT的二次繞組電阻 | 圖2.1,但一次側可以不接 | |||
√ | √ | 測量CT的二次繞組電阻、勵磁特性 | 圖2.1,但一次側可以不接 | ||
√ | √ | 測量CT的二次繞組電阻,檢查CT變比和極性 | 圖2.1, | ||
√ | √ | √ | 測量CT的二次繞組電阻、勵磁特性,檢查CT變比和極性 | 圖2.1 | |
√ | 測量CT的二次負荷 | 圖2.2, |
二步:同一CT其他繞組開(kāi)路,CT的一次側一端要接地,設備也要接地。
三步:接通電源,準備參數設置。
2.1.2 參數設置
試驗參數設置界面如圖2.3。
參數設置步驟如下:
用 旋轉鼠標 切換光標,選擇要進(jìn)行的試驗項目,當光標停留在某個(gè)試驗項目時(shí),屏幕顯示與該試驗項目相關(guān)的參數設置;當光標離開(kāi)試驗項目時(shí),屏幕顯示所選試驗項目所對應的接線(xiàn)圖。
可設置的參數如下:
(1)編號:輸入本次試驗的編號,便于打印、保存的管理與查找。
(2)額定二次電流:電流互感器二次側的額定電流,一般為1A和5A。
(3)級別:被測繞組的級別,對于CT,有P、TPY、計量、PR、PX、TPS、TPX、TPZ等8個(gè)選項。
(4)當前溫度:測試時(shí)繞組溫度,一般可輸入測試時(shí)的氣溫。
(5)額定頻率:可選值為:50Hz或60Hz。
(6)大測試電流:一般可設為額定二次電流值,對于TPY級CT,一般可設為2倍的額定二次電流值。對于P級CT,假設其為5P40,額定二次電流為1A,那么大測試電流應設5%*40*1A=2A;假設其為10P15,額定二次電流為5A,那么大測試電流應設10%*15*5A=7.5A。
如果用戶(hù)希望看到以下結果,需要準確設置基本參數(建議用戶(hù)設置)。
(1)匝比誤差、比值差和相位差
(2)準確計算的極限電動(dòng)勢及其對應的復合誤差
(3)實(shí)測的準確限值系數、儀表保安系數和對稱(chēng)短路電流倍數
(4)實(shí)測的暫態(tài)面積系數、峰瞬誤差、二次時(shí)間常數對于不同級別的CT,參數的設置也不同,見(jiàn)表2.2。
表2.2 CT參數描述
參數 | 描述 | P | TPY | 計量 | PR | PX | TPS | TPX | TPZ |
額定一次電流 | 用于計算準確的實(shí)際電流比 | √ | √ | √ | √ | √ | √ | √ | √ |
額定負荷, 功率因數 | 銘牌上的額定負荷,功率因數為0.8或1 | √ | √ | √ | √ | √ | √ | √ | √ |
√ | √ | √ | √ | √ | √ | √ | √ | ||
額定準確限值系數 | 銘牌上的規定,默認:10。用于計算極限電動(dòng)勢及其對應的復合誤差 | √ | |||||||
額定對稱(chēng)短路電流系數 | 銘牌上的規定,默認:10。用于計算極限電動(dòng)勢及其對應的峰瞬誤差 | √ | √ | √ | √ | ||||
一次時(shí)間常數 | 默認:100ms | √ | √ | √ | |||||
二次時(shí)間常數 | 默認:3000ms | √ | √ | ||||||
工作循環(huán) | C-t1-O或C-t1-O-tfr-C-t2-O,默認:C-t1-O循環(huán) | √ | √ | ||||||
t1 | 一次電流通過(guò)時(shí)間,默認:100ms | √ | √ | ||||||
tal1 | 一次通流保持準確限值的時(shí)間,默認:40ms | ||||||||
tfr | 一次打開(kāi)和重合閘的延時(shí),默認:500ms。選擇C-t1-O-tfr-C-t2-O循環(huán)才顯示 | √ | √ | ||||||
t2 | 第二次電流通過(guò)時(shí)間,默認:100ms。選擇C-t1-O-tfr-C-t2-O循環(huán)才顯示 | √ | √ | √ | |||||
tal2 | 二次通流保持準確限值的時(shí)間,默認:40ms 選擇C-t1-O-tfr-C-t2-O循環(huán)才顯示 | √ | √ | ||||||
額定儀表保安系數 | 銘牌上的規定,默認值:10。 用于計算極限電動(dòng)勢及其對應的復合誤差 | √ | |||||||
額定計算系數 | √ | ||||||||
額定拐點(diǎn)電勢Ek | √ | ||||||||
Ek對應的Ie | √ | ||||||||
面積系數 | √ | ||||||||
額定Ual | 額定等效二次極限電壓 | √ | |||||||
Ual對應的Ial | √ |
第五步: 選擇右邊的開(kāi)始按鈕進(jìn)行試驗。
2.1.3 試驗結果
試驗結果頁(yè),界面分別如圖2.4。
對于不同級別的CT和所選的試驗項目,試驗結果也不同,見(jiàn)表2.3。
表2.3 CT試驗結果描述
試驗結果 | 描述 | P | TPY | 計量 | PR | PX | TPS | TPX | TPZ | |
負荷 | 實(shí)測負荷 | 單位:VA,CT二次側實(shí)測負荷 | √ | √ | √ | √ | √ | √ | √ | √ |
功率因數 | 實(shí)測負荷的功率因數 | √ | √ | √ | √ | √ | √ | √ | √ | |
阻抗 | 單位:Ω,CT二次側實(shí)測阻抗 | √ | √ | √ | √ | √ | √ | √ | √ | |
電阻 | 電阻(25℃) | 單位:Ω,當前溫度下CT二次繞組電阻 | √ | √ | √ | √ | √ | √ | √ | √ |
電阻(75℃) | ,單位:Ω,折算到75℃下的電阻值 | √ | √ | √ | √ | √ | √ | √ | √ | |
勵磁 | 拐點(diǎn)電壓和拐點(diǎn)電流 | 單位:分別為V和A,根據標準定義,拐點(diǎn)電壓增加10%時(shí),拐點(diǎn)電流增加50%。 | √ | √ | √ | √ | √ | √ | √ | √ |
不飽和電感 | 單位:H,勵磁曲線(xiàn)線(xiàn)性段的平均電感 | √ | √ | √ | √ | √ | √ | √ | √ | |
剩磁系數 | 剩磁通與飽和磁通的比值 | √ | √ | √ | √ | √ | √ | √ | √ | |
二次時(shí)間常數 | 單位:s,CT二次接額定負荷時(shí)的時(shí)間常數 | √ | √ | √ | √ | √ | √ | √ | √ | |
極限電動(dòng)勢 | 單位:V,根據CT銘牌和75℃電阻計算的極限電動(dòng)勢 | √ | √ | √ | √ | √ | √ | |||
復合誤差 | 極限電動(dòng)勢或額定拐點(diǎn)電勢Ek下的復合誤差 | √ | √ | √ | √ | |||||
峰瞬誤差 | 極限電動(dòng)勢下的峰瞬誤差 | √ | √ | √ | ||||||
準確限值系數 | 實(shí)測的準確限值系數 | √ | √ | |||||||
儀表保安系數 | 實(shí)測的儀表保安系數 | √ | ||||||||
對稱(chēng)短路電流倍數Kssc | 實(shí)測的對稱(chēng)短路電流倍數 | √ | √ | √ | √ | |||||
暫態(tài)面積系數 | 實(shí)際的暫態(tài)面積系數 | √ | √ | √ | ||||||
計算系數Kx | 實(shí)測的計算系數 | √ | ||||||||
額定拐點(diǎn)電勢Ek | √ | |||||||||
Ek對應的Ie | 額定拐點(diǎn)電勢對應的實(shí)測勵磁電流 | √ | ||||||||
額定Ual | 額定等效二次極限電壓 | √ | ||||||||
Ual對應的Ial | 額定等效二次極限電壓對應的實(shí)測勵磁電流 | √ | ||||||||
誤差曲線(xiàn) | 5%(10%)誤差曲線(xiàn) | √ | √ | √ | √ | √ | √ | √ | ||
變比 | 變比 | 額定負荷下的實(shí)際電流比 | √ | √ | √ | √ | √ | √ | √ | √ |
匝數比 | 被測試的二次繞組與一次繞組的實(shí)際匝比 | √ | √ | √ | √ | √ | √ | √ | √ | |
比值差 | 額定負荷下的電流誤差 | √ | √ | √ | √ | √ | √ | √ | √ | |
相位差 | 額定負荷下的相位差 | √ | √ | √ | √ | √ | √ | √ | √ | |
極性 | CT一次和二次的極性關(guān)系,有同極性/-(減極性)和反極性/+(加極性)兩種 | √ | √ | √ | √ | √ | √ | √ | √ | |
匝比誤差 | 實(shí)測匝數比與額定匝比的相對誤差 | √ | √ | |||||||
標準誤差 | 額定負荷、下限負荷下,國標檢驗電流點(diǎn)的電流誤差、相位誤差表 | √ |
2.2 電壓互感器試驗
在參數界面,用 旋轉鼠標切換光標到類(lèi)型欄,選擇互感器類(lèi)型為PT。
2.2.1 試驗接線(xiàn)
試驗接線(xiàn)步驟如下:
一步:根據表2.4描述的PT試驗項目說(shuō)明,依照圖2.7或圖2.8進(jìn)行接線(xiàn)。
表2.4 PT試驗項目說(shuō)明
電阻 | 勵磁 | 變比 | 說(shuō)明 | 接線(xiàn)圖 |
√ | 測量PT的二次繞組電阻 | 圖2.7,一次側必須斷開(kāi) | ||
√ | √ | 測量PT的二次繞組電阻、勵磁特性 | 圖2.7,一次側必須斷開(kāi),且一次側高壓尾必須接地 | |
√ | 檢查PT變比和極性 | 圖2.8 |
第2步:同一PT其他繞組開(kāi)路。
第三步:接通電源,準備參數設置。
2.2.2 參數設置
PT的試驗參數設置界面如圖2.5。
參數設置步驟如下:
用 旋轉鼠標 切換光標,選擇要進(jìn)行的試驗項目,當光標停留在某個(gè)試驗項目時(shí),屏幕顯示與該試驗項目相關(guān)的參數設置;當光標離開(kāi)試驗項目時(shí),屏幕顯示所選試驗項目所對應的接線(xiàn)圖。
可設置的參數如下:
(1)編號:輸入試驗試驗編號。
(2)額定二次電壓:電壓互感器二次側的額定電壓。
(3)級別:被測繞組的級別,有P、計量等2個(gè)選項。
(4)當前溫度:測試時(shí)繞組溫度,一般可輸入當時(shí)的氣溫。
(5)額定頻率:可選值為:50Hz或60Hz。
(6)大測試電壓:試驗時(shí)設備輸出的大工頻等效電壓。
(7)大測試電流:試驗時(shí)設備輸出的大交流電流。
第四步: 選擇右邊的開(kāi)始按鈕進(jìn)行試驗。
2.2.3 試驗結果
試驗結果頁(yè),如圖2.6。
對于不同級別的PT和所選的試驗項目,試驗結果也不同,見(jiàn)表2.5。
表2.5 PT試驗結果描述
試驗結果 | 描述 | P | 計量 | |
電阻 | 電阻(25℃) | 單位:Ω,當前溫度下的電阻 | √ | √ |
電阻(75℃) | 單位:Ω,參考溫度下的電阻值,溫度可修改 | √ | √ | |
勵磁 | 拐點(diǎn)電壓和拐點(diǎn)電流 | 單位:分別為V和A,根據標準定義,拐點(diǎn)電壓增加10%時(shí),拐點(diǎn)電流增加50%。 | √ | √ |
變比 | 變比 | 額定負荷或實(shí)際負荷下的實(shí)際電流比 | √ | √ |
匝數比 | 被測試的二次繞組與一次繞組的實(shí)際匝比 | √ | √ | |
比值差 | 額定負荷或實(shí)際負荷下的電流誤差 | √ | √ | |
相位差 | 額定負荷或實(shí)際負荷下的相位差 | √ | √ | |
極性 | PT一次和二次的極性關(guān)系,有同極性/-(減極性)和反極性/+(加極性)兩種 | √ | √ |
從電源結構來(lái)看,目前,全國發(fā)電裝機容量24億千瓦,煤電裝機占比接近一半,約60%的電力來(lái)自燃煤發(fā)電。煤炭和煤電既是我國能源安全的基礎和“壓艙石",也是實(shí)現“雙碳"目標的重中之重。要控制化石能源消費、特別是控制煤炭消費增長(cháng)任務(wù)艱巨。
能源科技創(chuàng )新的總體水平還不能全部適應統一大市場(chǎng)的要求。近年來(lái),我國能源科技水平取得重大進(jìn)步,但原創(chuàng )性、大突破還存在短板,部分關(guān)鍵設備及原材料還需要進(jìn)口,能源科技創(chuàng )新水平總體不足。關(guān)鍵核心技術(shù)和裝備還不適應能源高質(zhì)量發(fā)展的要求,特別是構建新型電力系統亟待解決的清潔低碳和新能源、儲能等關(guān)鍵技術(shù)缺少創(chuàng )新突破。同時(shí),在“雙碳"目標的約束下,亟須加快煤炭清潔低碳技術(shù)的研發(fā)創(chuàng )新,綠色低碳技術(shù)攻關(guān)、*技術(shù)推廣應用尚需加大力度。能源與數字技術(shù)的融合發(fā)展、智慧化轉型隨著(zhù)新型電力系統的構建、油氣體制改革的深度推進(jìn)形勢緊迫。
能源產(chǎn)供需逆向分布影響了能源利用效率的提升。以煤為主是當前我國能源的突出特征,但絕大多數的煤炭都產(chǎn)自晉、陜、蒙等北方省區,而能源負荷中心則集中在東部、南部地區。同時(shí),由于我國風(fēng)光等清潔能源多分布在西北等經(jīng)濟欠發(fā)達地區,而電力需求則集中在東部、南部地區,電力供需的區位矛盾較大,逆向分布問(wèn)題突出,帶來(lái)了市場(chǎng)的自然分割,降低了能源利用效率,加大了市場(chǎng)交易流通成本,為統一市場(chǎng)建設增加了難度。解決新能源生產(chǎn)消費區域分布不均衡、發(fā)電和用能時(shí)間不匹配等問(wèn)題成為提高我國能源利用效率和推動(dòng)新能源大規模使用的重要基礎。
上海華住轉載其他網(wǎng)站內容,出于傳遞更多信息而非盈利之目的,同時(shí)并不代表贊成其觀(guān)點(diǎn)或證實(shí)其描述,內容僅供參考。版權歸原作者所有,若有侵權,請聯(lián)系我們刪除。